- (3) Apply what you have learned. Show work for multiple choice questions when appropriate.
 - (a) In the diagram below, parallelogram ABCD has diagonals \overline{AC} and \overline{BD} that intersect at point E.

Which expression is *not* always true?

- 1 $\angle DAE \cong \angle BCE$
- $2 \qquad \angle DEC \cong \angle BEA$
- $3 \quad \overline{AC} \cong \overline{DB}$
- $4 \quad \overline{DE} \cong \overline{EB}$
- (b) In the diagram below of rhombus *ABCD*, $m\angle C = 100$.

What is $m \angle DBC$?

- 1 40
- 2 45
- 3 50
- 4 80
- (c) Isosceles trapezoid *ABCD* has diagonals \overline{AC} and \overline{BD} . If AC = 5x + 13 and BD = 11x 5, what is the value of x?
 - 1 28
 - $2 \quad 10\frac{3}{4}$
 - 3 3
 - $4 \frac{1}{2}$

- (d) Which statement is true about every parallelogram?
 - 1 All four sides are congruent.
 - 2 The interior angles are all congruent.
 - 3 Two pairs of opposite sides are congruent.
 - 4 The diagonals are perpendicular to each other.
- (e) In rhombus ABCD, the diagonals \overline{AC} and \overline{BD} intersect at \overline{E} . If AE = 5 and BE = 12, what is the length of \overline{AB} ?
 - 1 7
 - 2 10
 - 3 13
 - 4 17
- (f) If the diagonals of a quadrilateral do *not* bisect each other, then the quadrilateral could be a
 - 1 rectangle
 - 2 rhombus
 - 3 square
 - 4 trapezoid
- (g) As shown in the diagram below, the diagonals of parallelogram *QRST* intersect at *E*. If $QE = x^2 + 6x$, SE = x + 14, and TE = 6x 1, determine *TE* algebraically.

(h) The diagram below shows isosceles trapezoid ABCD with $\overline{AB} \parallel \overline{DC}$ and $\overline{AD} \cong \overline{BC}$. If $m \angle BAD = 2x$ and $m \angle BCD = 3x + 5$, find $m \angle BAD$.

(i) In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x - 1, and TU = 4x - 3.

What is the length of \overline{SV} ?

- 1 5
- 2 2
- 3 7
- 4 4
- (j) In the diagram below of isosceles trapezoid *DEFG*, $\overline{DE} \parallel \overline{GF}$, DE = 4x 2, EF = 3x + 2, FG = 5x 3, and GD = 2x + 5. Find the value of x.

- (k) Which reason could be used to prove that a parallelogram is a rhombus?
 - 1 Diagonals are congruent.
 - 2 Opposite sides are parallel.
 - 3 Diagonals are perpendicular.
 - 4 Opposite angles are congruent.

6.3

 \square (I) In the diagram below, *MATH* is a rhombus with diagonals \overline{AH} and \overline{MT} .

If $m\angle HAM = 12$, what is $m\angle AMT$?

- 1 12
- 2 78
- 3 84
- 4 156

 \square (m) Given: \underline{JKLM} is a parallelogram.

 $\overline{JM}\cong\overline{LN}$

 $\angle LMN \cong \angle LNM$

Prove: *JKLM* is a rhombus.

